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Abstract

In recent years, there has been an interest in analyzing and quantifying the effects of random inputs in the solution of
partial differential equations that describe thermal and fluid flow problems. Spectral stochastic methods and Monte-Carlo
based sampling methods are two approaches that have been used to analyze these problems. As the complexity of the prob-
lem or the number of random variables involved in describing the input uncertainties increases, these approaches become
highly impractical from implementation and convergence points-of-view. This is especially true in the context of realistic
thermal flow problems, where uncertainties in the topology of the boundary domain, boundary flux conditions and het-
erogeneous physical properties usually require high-dimensional random descriptors. The sparse grid collocation method
based on the Smolyak algorithm offers a viable alternate method for solving high-dimensional stochastic partial differential
equations. An extension of the collocation approach to include adaptive refinement in important stochastic dimensions is
utilized to further reduce the numerical effort necessary for simulation. We show case the collocation based approach to
efficiently solve natural convection problems involving large stochastic dimensions. Equilibrium jumps occurring due to
surface roughness and heterogeneous porosity are captured. Comparison of the present method with the generalized poly-
nomial chaos expansion and Monte-Carlo methods are made.
� 2007 Elsevier Inc. All rights reserved.
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1. Introduction

With the rapid advances in computational power and easier access to high-performance computing plat-
forms, it has now become possible to computationally investigate realistic multiscale problems. The coupling
of various length and time scales in a deterministic solution give highly accurate predictions of the evolution
and stability of the investigated system. One of the key objectives of computational mechanics would be to
couple all the length scales from the atomistic through to the continuum, thus removing the need for any
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constitutive models or physical parameters to represent the system. But the present state-of-art in computa-
tional mechanics has been to couple only up to three scales of physics [1]. So there exists the need to input
constitutive relations and/or material properties to the model. These inputs are usually available or derived
from experimental data. The presence of uncertainties/perturbations in experimental studies implies that these
input parameters have some inherent uncertainties. To accurately predict the performance of the system, it
then becomes essential for one to include the effects of these input uncertainties into the model system and
understand how they propagate and alter the final solution.

The uncertainties in the physical model may also be due to inaccuracies or indeterminacies of the initial
conditions. This may be due to variation in experimental data or due to variability in the operating environ-
ment. Uncertainties may also creep in due to issues in describing the physical system. This may be caused by
errors in geometry, roughness and variable boundary conditions. Uncertainties could also occur due to the
mathematical representation of the physical system. Examples include errors due to approximate mathemat-
ical models (e.g. linearization of non-linear equations) and discretization errors.

The presence of uncertainties can be modelled in the system through reformulation of the governing equa-
tions as stochastic partial differential equations (SPDEs). Solution techniques for SPDEs can be broadly clas-
sified into two approaches: statistical and non-statistical. Monte-Carlo simulations and its variants constitute
the statistical approach to solve SPDEs. This approach gives access to the complete statistics. This method
does not approximate the solution space (like the other methods discussed later). The other major attraction
of these methods are that their convergence rates do not depend on the number of independent random vari-
ables. Further, they are very easy to implement. The only necessity of computing uncertainties using the sta-
tistical approach is the availability of a working deterministic code. However, the statistical approach becomes
quickly intractable for complex problems in multiple random dimensions. This is because the number of real-
izations required to acquire good statistics is usually quite large. Furthermore, the number of realizations
changes with the variance of the input parameters and the truncation errors in this inherently statistical
method are hard to estimate. This has in part been alleviated by improved sampling techniques like Latin
hypercube sampling and importance sampling among others [2].

A non-statistical approach consists of approximating and then modelling the uncertainty in the system. One
example of this approach is the perturbation method. Here, the random field is expanded about its mean in a
truncated Taylor series. This method is usually restricted to small values of uncertainties. A similar method is
to expand the inverse of the stochastic operator in a Neumann series. This method is again restricted to small
uncertainties and furthermore it is almost impossible to apply these methods to complex problems [3]. In the
context of expanding the solution in terms of its statistical moments, there has been some recent work in refor-
mulating the problem as a set of moment differential equations (MDE). The closure equations for these
MDE’s are then derived from Taylor expansions of the input uncertainty as well as perturbation and asymp-
totic expansions. The random domain decomposition method [4–7] coupled with the MDE method has been
shown to be successful in solving complex fluid flow problems in porous media having large input variances.

A more recent approach to model uncertainty is based on the spectral stochastic finite element method
(SSFEM) [3]. In this method, the random field is discretized directly, i.e uncertainty is treated as an additional
dimension along with space and time and a field variable is expanded along the uncertain dimension using
suitable expansions. The basic idea is to project the dependent variables of the model onto a stochastic space
spanned by a set of complete orthogonal polynomials. These polynomials are functions of a set of random
variables n(h) where h is a realization of the random event space. Ghanem and Spanos first used SSFEM
in linear elastic problems in [3]. Ghanem and co-workers subsequently applied it to transport in random media
[8], structural dynamics applications [9] and heat conduction problems [10]. Karniadakis and co-workers
applied a generalized polynomial chaos expansion to model uncertainty in diffusion [11], fluid flow applica-
tions [12] and transient heat conduction problems [13]. In the original work by Wiener, Gaussian random vari-
ables were used with Hermite polynomials. The scheme has been extended to include other random
distributions [14–19]. Error bounds, and convergence studies [20–24] have shown that these methods exhibit
fast convergence rates with increasing orders of expansions. These convergence studies assume that the solu-
tions are sufficiently smooth in the random space.

Like the statistical methods, the SSFEM approach also reduces the problem to a set of deterministic equa-
tions. But unlike the statistical methods, the resulting deterministic equations are often coupled. This coupled
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nature of the deterministic problems makes the solution of the stochastic problem extremely complex as the
number of stochastic dimensions increases or the number of expansion terms is increased. In fact, computa-
tional complexity of the problem increases combinatorially with the number of stochastic dimensions and the
number of expansion terms. This problem is especially acute when dealing with realistic problems in fluid
mechanics. The number of random dimensions needed to represent surface fluctuations (roughness) or perme-
ability variations is relatively high (N P 8). To solve these problems in high-dimensional spaces and to allow
non-smooth variations of the solution in the random space, there have been recent efforts to couple the fast
convergence of the Galerkin methods with the decoupled nature of Monte-Carlo sampling [25]. Babuska et al.
[26] proposed a methodology wherein the Galerkin approximation is used to model the physical space while a
collocation scheme is used to sample the random space. A tensor product rule was used to interpolate the vari-
ables in stochastic space using products of one-dimensional interpolation functions (double orthogonal poly-
nomials) based on Gauss points. Though this scheme effectively decoupled the deterministic system of
equations, the number of realizations required to build the interpolation scheme increased as power of the
number of random dimensions (nN

pt). Xiu and Hesthaven [27] recently used the Smolyak algorithm to build
sparse grid interpolants in high-dimensional space. The sparse grid collocation and cubature schemes have
been well studied and utilized in different fields [28–32]. Using this method, interpolation schemes can be con-
structed with orders of magnitude reduction in the number of sampled points to give the same level of approx-
imation (up to a logarithmic factor) as interpolation on a uniform grid.

In the standard sparse grid collocation approach, all the dimensions are treated equally. In many problems
usually encountered, not all the dimensions are important. That is, the solution varies much more smoothly in
some particular dimension than in others. This brings up the possibility of reduction in the computational
effort required to solve the stochastic problem by weighting the number of sampling points in the stochastic
dimensions according to the solution smoothness in that dimension. But it is not possible to know a priori
which dimensions are more important. It is however possible to develop heuristic methods to adaptively sam-
ple the stochastic space to reduce the number of function evaluations.

The major contributions of the present work are as follows: We utilize an adaptive extension to the sparse
grid collocation method that can automatically detect the important dimensions and bias the sparse sampling
towards those dimensions. This results in substantial savings in the computational effort required to solve
large dimensional problems. We further utilize these methods to tackle significant problems in natural convec-
tion like investigating the effects of surface roughness on the dynamics of Rayleigh–Bénard convection and the
effects of heterogeneous porous media on natural convection. We are able to accurately capture equilibrium
shifts and efficiently scale to a large number of stochastic dimensions. This work further provides a road map
to convert any deterministic code to include the effects of input uncertainty in a non-intrusive manner utilizing
the adaptive sparse grid collocation method (ASGC). We illustrate this by analyzing the effect of input uncer-
tainties in realistic natural convection problems.

The layout of this article is as follows: In the next section, we briefly describe the problem of interest and
introduce the governing equations describing the system. Section 3 briefly describes the spectral Galerkin
method as a prelude to introducing collocation based methods, which is described in Section 4. This section
provides a natural progression of development from simple collocation to sparse collocation to adaptive
sparse collocation. We have attempted to make the paper complete by including a brief of the mathematics
that lead to the adaptive sparse grid collocation method. Sections 5 and 6 describe the conventional and adap-
tive sparse grid collocation methodologies. Section 7 provides a basic outline to construct a sparse grid collo-
cation methodology in a non-intrusive way utilizing existing deterministic codes. The numerical examples are
given in Section 8 which also includes some discussion of the relevant physics. We conclude in Section 9 with
some comments and avenues of future work.

2. Problem definition

The main focus of this work is to investigate the effects of input uncertainties in natural convection problems.
Consider a d-dimensional bounded domain D � Rd with a boundary oDd

S
oDn. Dirichlet boundary conditions

are applied on oDd, while Neumann boundary conditions are applied on oDn. Natural convection sets in due to
the thermal differential maintained across oDd. Consider also a complete probability space ðX;F;PÞ, where X
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is the event space, F � 2X the r-algebra, and P : F! ½0; 1� is the probability measure. In the problems that we
consider, the input uncertainties occur due to the following random fields fiðx;xÞ, i = 1, 2 or 3:

� Variations in the Dirichlet boundary conditions: hðxÞ ¼ f1ðx;xÞ, where x 2 oDd and x 2 X.
� Variations in the boundary topology (roughness): oDd ¼ f2ðx;xÞ, where x 2 oDd and x 2 X.
� Variations in material properties (viscosity, porosity): .ðxÞ ¼ f3ðx;xÞ, where x 2 D and x 2 X.

Under these conditions the problem is to find stochastic functions that describe the velocity
u � uðx; t;xÞ : D� ½0; T � � X! Rd , the pressure p � pðx; t;xÞ : D� ½0; T � � X! R and the temperature
h � hðx; t;xÞ : D� ½0; T � � X! R, such that for P – almost everywhere x 2 X, the following equations are
satisfied:
r � u ¼ 0; ð1Þ
ou

ot
þ u � ru ¼ �rp þ Prr2uþ F ðu; hÞ; ð2Þ

oh
ot
þ u � rh ¼ r2h; ð3Þ
where F ðu; hÞ is the forcing function in the Navier–Stokes equations and Pr is the Prandtl number of the fluid.
In the problems considered later, F ðu; hÞ will usually be the Bousinnessq approximated buoyant force term
�RaPrheg, where Ra is the thermal Rayleigh number and eg is the gravity vector.

The solution methodology of the above set of coupled differential equations is to first reduce the complexity
of the problem by reducing the probability space into a finite-dimensional space. In some cases the random
field f ðx;xÞ can be represented/described by a finite length random vector ½n1; . . . ; nN � : X! RN . In other
cases the random field can have a spatial correlation or variation. In the present work, we assume that we
are given the corresponding spatial correlation for the random field. There is rich literature on techniques
to extract/fit correlations for these random fields from input experimental/numerical data. This is an area
of intense ongoing research [33]. Using the ‘finite-dimensional noise assumption’ [22], the random process
is decomposed into a finite set of random variables. A commonly used decomposition is via the Karhunen–
Loève expansion. In the K–L expansion, the covariance kernel of the input random process is spectrally
decomposed to a finite set of uncorrelated random variables. Upon decomposition and characterization of
the random inputs into N random variables, niðxÞi ¼ 1; . . . ;N , the solution to the coupled system of Eqs.
(1)–(3) can be described by this set of random variables. Thus we can consider the following:
uðx; t;xÞ ¼ uðx; t; n1ðxÞ; . . . ; nN ðxÞÞ;
hðx; t;xÞ ¼ hðx; t; n1ðxÞ; . . . ; nN ðxÞÞ;
pðx; t;xÞ ¼ pðx; t; n1ðxÞ; . . . ; nN ðxÞÞ:
It is usually assumed that niðxÞ are independent random variables with probability distribution functions
qi : Ci ! R with bounded ranges, Ci. The joint probability density of the N-tuple in the above equations
n ¼ ðn1ðxÞ; . . . ; nN ðxÞÞ is then given by
qðnÞ ¼
YN
i¼1

qiðniÞ 8n 2 C; ð4Þ
where the support C ¼
QN

i¼1C
i � RN . The outcome of the above procedure is that the set of Eqs. (1)–(3) can

now be written as a set of differential equations in (N + d) dimensions, where N is the dimensionality of the
truncated random space C and d is the dimensionality of the physical space D:
r � uðx; t; nÞ ¼ 0; ðx; t; nÞ 2 D� ½0; T � � C; ð5Þ
ouðx; t; nÞ

ot
þ uðx; t; nÞ � ruðx; t; nÞ ¼ �rpðx; t; nÞ þ Prr2uðx; t; nÞ þ F ðuðx; t; nÞ; hðx; t; nÞÞ;

ðx; t; nÞ 2 D� ½0; T � � C; ð6Þ
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ohðx; t; nÞ
ot

þ uðx; t; nÞ � rhðx; t; nÞ ¼ r2hðx; t; nÞ; ðx; t; nÞ 2 D� ½0; T � � C: ð7Þ
For the sake of brevity, we shall denote the coupled system of Eqs. (5)–(7) as
Bðu; p; h : x; t; nÞ ¼ 0: ð8Þ
3. Generalized polynomial chaos expansions

In this approach, the dependent variables ðu; p; hÞ are regarded as random processes. These random fields
are then expanded into a truncated series. One could use the Karhunen–Loève expansion to represent these
fields, but unfortunately one does not a priori know the correlation functions for these variables. The general-
ized polynomial chaos expansion is used to represent the variables in terms of orthogonal polynomials in the
stochastic space spanned by n 2 C. This is written as
jðx; t;xÞ ¼
XP

i¼0

jiðx; tÞUiðniðxÞÞ; ð9Þ
where j is any of the dependent variables. Here ji are the deterministic coefficients that can be thought of as being
similar to the coefficients in a Fourier expansion of a function. Note that the possible infinite summation has been
truncated to only P terms. The random trial basis functions {Ui} are chosen according to the type of random
variable {ni} that has been used to describe the input random field. For example, if Gaussian random variables
are chosen then the Askey based orthogonal polynomials {Ui} are chosen to be Hermite polynomials, if ni are
chosen to be uniform random variables, then {Ui} must be Legendre polynomials (for a complete description
of the GPCE scheme, the interested reader is referred to [18]). The total number of expansion terms is determined
by the stochastic dimension (N) and the highest-order (p) of the orthogonal polynomials as follows:
P þ 1 ¼ ðN þ pÞ!
N !p!

: ð10Þ
The GPCE is used to expand all the dependent variables in terms of the orthogonal polynomials. Substituting
these expansions into the governing equation, Eq. (8), gives:
B
XP

i¼0

uiUi;
XP

i¼0

piUi;
XP

i¼0

hiUi : x; t; n

 !
¼ 0: ð11Þ
Following this, a Galerkin projection of the above equation onto each polynomial basis Ui is conducted to
ensure that the error is orthogonal to the functional space spanned by the finite-dimensional basis Ui:
B
XP

i¼0

uiUi;
XP

i¼0

piUi;
XP

i¼0

hiUi : x; t; n

 !
;Uj

* +
¼ 0; ð12Þ
where ha; bi is the inner product of the functions a and b over the ensemble ðha; bi ¼
R

X abdxÞ. By using the
orthogonality of the polynomial basis, we can obtain a set of (P + 1) coupled equations for each random mode
ui; pi; hi. By utilizing the polynomial chaos expansion followed by the Galerkin projection, the randomness has
been transferred from the dependent variables to the basis polynomials. The resulting governing equations for
the expansion coefficients are deterministic.

This methodology has been very successful in solving SPDEs [3,11–14,16,18,19,23]. We will restrict our dis-
cussion to the disadvantages of this method so as to motivate the next few sections. The coupled nature of the
expansion coefficients makes the implementation of the GPCE method non-trivial. Substantial effort has to be
put in to convert a validated deterministic code into a feasible stochastic one. As the number of stochastic
dimensions increases, the rapidly growing number (P + 1) of basis functions effectively reduces the efficiency
of the method. New faster and more efficient solvers and data processing methodologies are necessary for the
efficient solution of higher-dimensional problems. The major constraint for the utility of this methodology is
the coupled nature of the resulting equations. This resulted in the search for a method that combined the fast
convergence and error estimates of the spectral Galerkin method with the decoupled nature of the more sta-
tistical methods like the Monte-Carlo methods.
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4. Collocation methods

In the spectral Galerkin method described in the previous section, the spatial domain is approximated using
a finite element discretization and the stochastic space is also approximated using a spectral element discret-
ization. This representation of the stochastic space causes the coupled nature of the resulting equations.
Another approach is to have a finite element approximation for the spatial domain and approximate the
multi-dimensional stochastic space using interpolating functions. The interpolating functions are mutually
orthogonal and the resulting equations are decoupled. This approach is called the collocation approach, where
one computes the deterministic solution at various points in the stochastic space and then builds an interpo-
lated function that best approximates the required solution. We now detail the issues involved in constructing
the stochastic solution using the collocation method. We follow the spirit of the discussion in Xiu et al. [27] to
give an intuitive development of the method.
4.1. Fundamentals of the collocation method

The basic idea of the collocation approach is to build an interpolation function for the dependent variables
using their values at particular points in the stochastic space. The Galerkin projection is then applied to find
that interpolation function which minimizes the projected error of the approximated system. Denote by n any
point in the random space C � RN , by PN, the space of all N-variate polynomials and by Pp

N , the subspace of
polynomials of total degree at most p. The problem of interpolation can be stated as follows: Given a set of
nodes HN ¼ fnig

M
i¼1 in the N-dimensional random space C and the smooth function f : RN ! R, find the poly-

nomial If such that If ðniÞ ¼ f ðniÞ; 8i ¼ 1; . . . ;M .
The polynomial approximation If can be expressed using the Lagrange interpolation polynomials as

follows:
If ðnÞ ¼
XM

k¼1

f ðnkÞLkðnÞ; ð13Þ
where LiðnjÞ ¼ dij. Now, once the interpolating polynomial have been generated using the nodes {HN}, the
value of the function at any point n 2 C is approximately If ðnÞ. The Lagrange interpolated values of
ðu; p; hÞ, denoted by ðû; p̂; ĥÞ are as follows:
ðûðnÞ; p̂ðnÞ; ĥðnÞÞ ¼ ðIuðnÞ;IpðnÞ;IhðnÞÞ ¼
XM

k¼1

ðuðnkÞ; pðnkÞ; hðnkÞÞLkðnÞ: ð14Þ
Substituting this into the governing equation, Eq. (8), gives
B
XM

i¼1

uðniÞLiðnÞ;
XM

i¼1

pðniÞLiðnÞ;
XM

i¼1

hðniÞLiðnÞ : x; t; n

 !
¼ 0: ð15Þ
The interpolation form of the solution immediately leads to M decoupled deterministic systems
BðuðniÞ; pðniÞ; hðniÞ : x; t; niÞ ¼ 0; i ¼ 1; . . . ;M : ð16Þ

The collocation method collapses the (N + d)-dimensional problem to solving M deterministic problems in d

dimensions. The statistics of the random solution can then be obtained by
hzaðxÞi ¼
XM

k¼1

zaðx; nkÞ
Z

C
LkðnÞqðnÞdn: ð17Þ
Remark 1 (Relation to the spectral Galerkin method). Babuska and co-workers [21,22] realized that by
choosing appropriate basis functions, the so-called double orthogonal functions, the spectral stochastic
Galerkin formulation can also be made decoupled. This is specific to the case when the random input is a
linear function of the input random variables. They also showed that in case the input uncertainties are
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multi-linear combinations of the random variables fniðxÞg (as would happen if one uses the K–L expansion to
truncate the input random fields to a finite set of random variables), the solution obtained from the collocation
procedure coincides with the stochastic Galerkin solution [26]. They argue that the collocation method can be
seen as a pseudo-spectral Galerkin method with some distinct advantages.
4.2. Building the interpolating polynomial basis

In most problems involving input uncertainties, the final objective is usually to compute the moments of the
dependent variables (Eq. (17)) and/or generate the probability distribution functions (PDFs) at some point in
the solution phase space. This is accomplished through specific quadrature and sampling operations on the
interpolation function. The analysis and construction of the interpolation function is usually introduced
through a univariate interpolation formula.

Let f : ½a; b� ! R be a function that has to be interpolated by a polynomial Inðf Þ using a finite number of
nodes a 6 x0 < x1 < � � � < xn 6 b. There exists a (unique) polynomial Inðf Þ 2 Pn

1 satisfying Inðf ÞðxiÞ ¼ f ðxiÞ
for i ¼ 0; 1 . . . ; n. This can be written in the form:
Inðf ÞðxÞ ¼
Xn

i¼0

f ðxiÞLiðxÞ; ð18Þ
where the basis polynomials are given by
LiðxÞ ¼
Yn

k¼0;k 6¼i

x� xk

xi � xk
: ð19Þ
As the number of points n increases, the interpolation function Inðf Þ represents the function f better. This is
irrespective of how one chooses the nodes fxign

i¼0. However, uniform convergence ðkf �Inðf Þk1 ! 0 as
n!1Þ is not guaranteed for any arbitrary distribution of the nodes. Utilizing a Taylor series expansion,
the interpolation error for a function f 2 Cnþ1½a; b� at a point x is given by [32]
f ðxÞ �Inðf ÞðxÞ ¼
f nþ1ðnÞ
ðnþ 1Þ!

Yn

j¼0

ðx� xjÞ: ð20Þ
The magnitude of the (n + 1)th derivative could outweigh the product of the nodes. But there are unique node
distributions that exist where uniform convergence with the number of nodes can be proved if f 2 C1½a; b�.

One way of quantifying the approximating quality of the interpolating polynomial for a given node distri-
bution (denoted by X) is to compare it with a polynomial whose nodes have been selected in an optimal way to
theoretically minimize the interpolation error. This best approximation polynomial p	nðf Þ 2 Pn

1, is defined as the
polynomial with the following property [32]:
kf � p	nðf Þk1 6 kf �Iðf Þk1 8Iðf Þ 2 Pn
1: ð21Þ
The distance of any interpolation polynomial Iðf Þ from the best approximation polynomial is measured in
terms of the Lebesgue constant KnðX Þ as follows [32]:
kf �Iðf Þk1 6 kf � p	nðf Þk1ð1þ KnðX ÞÞ; ð22Þ

where KnðX Þ ¼ maxx2½a;b�

Pn
i¼0jLiðxÞj

� �
where X is any distribution of the nodes. It is apparent that KnðX Þ does

not depend on the function f but in fact only depends on the distribution of the points X. Therefore it is pos-
sible to construct a priori, sets of nodes X with a small Lebesgue constant. One such type of node distribution
is the interpolation based at the Chebyshev extrema [32].

Once the type of support nodes {X} has been chosen and the Lebesgue constant for the node distribution
computed, it is straightforward to arrive at error bounds for the polynomial interpolation function IX . For
instance, the error bound for the Chebyshev node based interpolation function of the function f 2 Ck is given
by [32,34]
kf �IX ðf Þk1 6 Cn�k logðnÞ: ð23Þ
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4.3. From univariate interpolation to multivariate interpolation

When one is dealing with multiple stochastic dimensions, it is straightforward to extend the interpolation
functions developed in one dimension to multiple dimensions as simple tensor products. If uðnÞ is a function
that has to be approximated in N-dimensional space, and i ¼ ðm1;m2; . . . ;mN Þ are the number of nodes used in
the interpolation in N dimensions, the full-tensor product interpolation formula is given as
IN uðnÞ ¼ ðIi1 
 � � � 
IiN ÞðuÞðnÞ ¼
Xm1

j1¼1

� � �
XmN

jN¼1

uðni1
j1
; . . . ; niN

jN
Þ:ðLi1

j1

 � � � 
 LiN

jN
Þ; ð24Þ
where Iik are the interpolation functions in the ik direction and nik
jm

is the jmth point in the kth coordinate.
Clearly, the above formula needs m1 � � � � � mN function evaluations, at points sampled on a regular grid.
In the simplest case of using only two points in each dimension, the total number of points required for a
full-tensor product interpolation is M = 2N. This number grows very quickly as the number of dimensions
is increased. Thus one has to look at intelligent ways of sampling points in the regular grid described by
the full-tensor product formula so as to reduce the number of function evaluations required. This immediately
leads to sparse collocation methods that are briefly reviewed next.

5. Sparse grid collocation methods

For the univariate case, Gauss points and Chebechev points have least interpolation error (for polynomial
approximations). In the case of multivariate interpolation, one feasible methodology that has been used is to
construct interpolants and nodal points by tensor products of one-dimensional interpolants and nodal points.
An obvious disadvantage of this strategy is that the number of points required increases combinatorially as the
number of stochastic dimensions is increased.

The Smolyak algorithm provides a way to construct interpolation functions based on a minimal number of
points in multi-dimensional space. Using Smolyak’s method, univariate interpolation formulae are extended
to the multivariate case by using tensor products in a special way. This provides an interpolation strategy with
potentially orders of magnitude reduction in the number of support nodes required. The algorithm provides a
linear combination of tensor products chosen in such a way that the interpolation property is conserved for
higher dimensions.

5.1. Smolyak’s construction of sparse sets

Smolyak’s algorithm provides a means of reducing the number of support nodes from the full-tensor prod-
uct formula while maintaining the approximation quality of the interpolation formula up to a logarithmic fac-
tor. Consider the one-dimensional interpolation formula
Umðf Þ ¼
Xm

j¼1

f ðxjÞLj: ð25Þ
Let us denote the set of points used to interpolate the one-dimensional function by H(k). For instance, H(3)

could represent the Chebyshev points that interpolate a third-order polynomial. The Smolyak algorithm con-
structs the sparse interpolant Aq;N (where N is the number of stochastic dimensions and q-N is the order of
interpolation) using products of one-dimensional functions. Aq;N is given as [31,32]
Aq;N ðf Þ ¼
X

q�Nþ16jij6q

ð�1Þq�jij �
N � 1

q� i

� �
� ðUi1 
 � � � 
UiN Þ; ð26Þ
with AN�1;N ¼ 0 and where i ¼ ði1; . . . ; iN Þ and jij ¼ i1 þ � � � þ iN . Here ik can be thought of as the level of
interpolation along the kth direction. The Smolyak algorithm builds the interpolation function by adding
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a combination of one-dimensional functions of order ik with the constraint that the sum total ðjij ¼
i1 þ � � � þ iN Þ across all dimensions is between q� N þ 1 and q. The structure of the algorithm becomes
clearer when one considers the incremental interpolant, Di given by [28,30–32]
U0 ¼ 0; Di ¼ Ui �Ui�1: ð27Þ

The Smolyak interpolation Aq;N is then given by
Aq;Nðf Þ ¼
X
jij6q

ðDi1 
 � � � 
 DiN Þðf Þ ¼Aq�1;Nðf Þ þ
X
jij¼q

ðDi1 
 � � � 
 DiN Þðf Þ: ð28Þ
To compute the interpolant Aq;N ðf Þ from scratch, one needs to compute the function at the nodes covered by
the sparse grid Hq;N
Hq;N ¼
[

q�Nþ16jij6q

ðHði1Þ1 � � � � �HðiN Þ1 Þ: ð29Þ
The construction of the algorithm allows one to utilize all the previous results generated to improve the inter-
polation (this is immediately obvious from Eq. (28)). By choosing appropriate points (like the Chebyshev and
Gauss–Lobatto points) for interpolating the one-dimensional function, one can ensure that the sets of points
H(i) are nested ðHðiÞ � Hðiþ1ÞÞ. To extend the interpolation from level i to i + 1, one only has to evaluate the
function at the grid points that are unique to Hðiþ1Þ, that is, at Hi

D ¼ Hi nHi�1. Thus, to go from an order q � 1
interpolation to an order q interpolation in N dimensions, one only needs to evaluate the function at the dif-
ferential nodes DHq;N given by
DHq;N ¼
[
jij¼q

ðHi1
D 
 � � � 
HiN

D Þ: ð30Þ
5.2. Interpolation error

As a matter of notation, the interpolation function used will be denoted ANþk;N , where k is called the level of
the Smolyak construction. The interpolation error using the Smolyak algorithm to construct multi-dimen-
sional functions (using the piecewise multi-linear basis) is [31,32]
kf � Aq;N ðf Þk ¼ OðM�2jlog2M j3ðN�1ÞÞ; ð31Þ

where M ¼ dimðHðq;NÞÞ is the number of interpolation points. On the other hand, the construction of multi-
dimensional functions using polynomial basis functions gives an interpolation error of [31,32]
kf � Aq;N ðf Þk ¼ OðM�kjlog2M jðkþ2ÞðNþ1Þþ1Þ; ð32Þ

assuming that the function f 2 F k

d , that is, it has continuous derivatives up to order k.

5.3. Solution strategy

The final solution strategy is as follows: A stochastic collocation method in C � RN along with a finite ele-
ment discretization in the physical space D � Rd is used. Given a particular level of interpolation of the Smol-
yak algorithm in N-dimensional random space, we define the set of collocation nodes fnkg

M
k¼1 on which the

interpolation function is constructed. Given a piecewise FEM mesh X h
d , find, for k ¼ 1; . . . ;M , solutions
ðuh
kðxÞ; ph

kðxÞ; h
h
kðxÞÞ ¼ ðuhðx; nkÞ; phðx; nkÞ; hhðx; nkÞÞ; ð33Þ
such that
BðuhðniÞ; phðniÞ; hhðniÞ : ni; x; tÞ ¼ 0; i ¼ 1; . . . ;M : ð34Þ

The final numerical solution takes the form
zðx; nÞ ¼
XM

k¼1

zkðxÞL̂kðnÞ; ð35Þ
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where z is one of uh, ph, hh and bLk are the multi-dimensional interpolation functions constructed using the
Smolyak algorithm.

Recently, rigorous error estimates for the collocation based stochastic methodology have been developed in
[27 and 35]. The error is basically split into a superposition of errors: the error due to the discretization of the
deterministic solution, eD, and the error due to the interpolation of the solution in stochastic space, eI. This
error can be written as e 6 ðC1e2

D þ C2e2
I Þ

1=2, where C1 and C2 are constants independent of the discretizations
in physical space and stochastic space.

5.4. Numerical illustrations

In this subsection, we illustrate the sparse grid interpolation method with a few examples which will also
serve as a motivation for the development of the adaptive sparse grid methodology.

5.4.1. Grid sizes

Fig. 1 shows the two-dimensional interpolation nodes for the sparse grid along with the two-dimensional
tensor product grid based on the same one-dimensional interpolation nodes. As the number of dimensions or
the level of interpolation increases, the number of points to construct interpolants with similar errors using the
sparse grid collocation method reduces appreciably as compared to the full-tensor product collocation
method.

5.4.2. Interpolating smooth functions

The sparse grid collocation method requires function evaluations at a finite number of discrete points h.
These function evaluations are usually finite element simulations of the deterministic problem at each stochas-
tic point Hi. To illustrate the methodology, we will instead assume that certain analytical functions are the
inputs at specific nodal points. Consider the function f ¼ e�x2�.y2

, where . is a positive number. This function
is analytically smooth. For . ¼ 1, the function is isotropically smooth. The computational domain is
½�1; 1� � ½�1; 1�. Fig. 2 compares the actual function and the interpolated function. The absolute error
max jf �Aq;2ðf Þj is 3� 10�5 when considering 3329 points. This corresponds to building the sparse interpo-
lant using one-dimensional interpolating functions up to order 9. To achieve a similar interpolation error
using the full-tensor product grid would require 263,169 points.

Now we gradually change the value of . to make the function more anisotropic. The interpolation error
versus the number of nodes in the sparse grid is plotted in Fig. 3 for . varying from 1 to 10,000. Notice that
as the anisotropy increases, the variation of the function along one direction becomes progressively steeper
Fig. 1. Collocation nodes for a two-dimensional problem in a level 4 full (left) and sparse grid (right). Both the grids are constructed from
the same level of one-dimensional interpolation functions. The sparse grid offers marginally worse interpolation properties with huge
improvements in the number of points sampled.



Fig. 2. Comparison of the exact (left) and interpolant (right) functions.
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Fig. 3. Interpolation error for anisotropic functions: as . increases, the function becomes steeper (Fig. 4). More points are required to
accurately interpolate the function.
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(see Fig. 4). Thus, more support nodes are required to accurately interpolate the function. To reach an accu-
racy of 2� 10�2 the number of points required are 65, 145, 321, 705, 1537 and 3329, for q ¼ 1; 10; 100; 1000
and 10,000, respectively.

The critical point to note here is that even though only one dimension of the function is very steep (as .
increases), the sparse grid increases the node allocation in all directions. This suggests that one can further
reduce the number of function evaluations if we can detect the directions in which the function varies more
smoothly than the others.
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Fig. 4. Slice of the function in the x plane. The arrow shows the direction of increasing ..
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5.4.3. Interpolating discontinuous functions

In many physical systems governed by SPDEs, one is primarily interested in analyzing mode jumps and
equilibrium shifts that occur due to small variations in the random variables. One extreme case is when there
is a sharp (finite) discontinuity in the solution across a particular random variable. We are interested in the
performance of the sparse grid collocation method in capturing this discontinuity.

Consider a function f ¼ e�x2þ2signðyÞ in the domain ½�1; 1� � ½�1; 1�. Here sign is the signum function: 1,
when y is positive and �1, otherwise. The function f has a sharp discontinuity along the y = 0 plane. On
the other hand, the function is very smooth in the x direction. That is, the function f ðx; cÞ, for a constant c

is an exponentially decaying function. The sparse grid method is used to build the interpolation for this func-
tion. Fig. 5 plots the error as a function of the number of support nodes used by the algorithm. Notice that the
error reduction is sub-linear during the first few interpolation levels. This is because of the error caused by the
jump across the x axis.

Fig. 6 plots the ‘evolution’ of the interpolation function as the number of support nodes increases. The first
row shows a plot of the interpolated function while the second row shows the corresponding support nodes
required to build that particular interpolation function. To construct a polynomial interpolation for the func-
tion f with an error in the range of 2� 10�3 required 32,769 support nodes. But notice that the sparse grid adds
points equally in both dimensions, even when the function varies very smoothly in one dimension.
10
0

10
1

10
2

10
3

10
4

10
5

10
-4

10
-3

10
-2

10
-1

10
0

10
1

Number of nodes

E
rr

or

Fig. 5. Interpolation error for a discontinuous function.
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The two examples discussed above illustrate the possibility of further reducing the number of needed func-
tion evaluations for cases in which (i) the functional dependence on the stochastic variables is additive or
nearly additive, (ii) the function is anisotropic in the stochastic dimensions. and (iii) when discontinuities exist
in the function in certain dimensions.

The choice of support nodes now depends implicitly on the function that one is interpolating. Therefore,
one must decide which nodes to sample on-the-fly for minimizing the number of function evaluations. This
naturally leads to the idea of adaptive sparse grid collocation, which is discussed in the next section.

6. Adaptive sparse grid collocation methods

As stated earlier, in the standard sparse grid approach, all the stochastic dimensions are treated equally. By
treated equally, we mean that the number of grid points in each direction is equal. In most physical problems
that one deals with, there usually exists some structure (additive, nearly-additive, anisotropic, discontinuous)
that can be taken advantage of, to reduce the number of function evaluations. However, the specific kind of
structure that the particular solution exhibits is not known a priori. Thus one must construct an approach that
automatically detects which dimensions require more nodal points.

The basic proposition of the adaptive sparse grid collocation method is to assess the stochastic dimensions
differently, according to the error of interpolation in that dimension. We closely follow the dimension adaptive
quadrature approach developed by Gerstner and Griebel [36] and further developed by Klimke [32]. The rea-
son all dimensions are sampled equally in the standard sparse grid method is apparent by revisiting Eq. (28).
The multi-index jij ¼ i1 þ � � � þ iN that determines the number of sampling points in each dimension ik is sam-
pled from the simplex jij 6 q. This ensures that if ðn1; n2; . . . ; nN Þ is a valid index, then ðn2; n1; . . . ; nN Þ is also a
valid index and so on. One simple approach to extend the conventional sparse grid to sample differently
important dimensions is to consider a weighted simplex a � i 6 q (this simple extension is in fact not feasible
[36]). Another approach is to allow any general index set satisfying certain conditions. The problem essentially
boils down to choosing index sets from the set of conventional sparse grid points. One can heuristically
improve the performance of the interpolant in directions where the function is varying rapidly.

6.1. Generalized sparse grid construction

The conventional Smolyak algorithm imposes a strict admissibility criterion on the index sets ðjij 6 qÞ. The
incorporation of heuristically choosing the most important dimensions/directions/regions can be achieved by
relaxing this strict admissibility criterion. The so-called generalized sparse grids [36] are obtained by relaxing
this admissibility criteria.

An index set S is called admissible if for all indices k 2 S [36]
k� ej 2 S for 1 6 j 6 N ; kj > 1; ð36Þ

where ej is the jth unit vector. This means that an admissible set contains for every index k all indices which
have smaller entries than k. The generalized sparse grid includes both the conventional sparse grids as well as
the classical product formulae within it. This criterion still ensures the telescopic property of the differential
interpolant Di ¼ Ui �Ui�1. This means that one can construct a better interpolant starting from a coarse
interpolant by just sampling on the unique nodes of the finer interpolant, see Eq. (28). Denote the space of
all admissible indices by F. The generalized sparse grid construction is then [36]
ASðf Þ ¼
X
i2S

ðDi1 
 . . .
 Di1Þðf Þ ð37Þ
for an admissible set S 2F. By carefully constructing the index sets, it is possible to construct polynomials at
least as good as the case of the conventional sparse grids.

6.2. Interpolation procedure

To construct interpolation polynomials of increasing accuracy by increasing the number of indices, one uses
a nested sequence of index sets (as in the case of the conventional sparse grid method). The construction starts
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with the one element index set 1 ¼ ð1; . . . ; 1Þ. Indices are added successively such that two criteria are satisfied:
the resulting index sets all remain admissible and a large reduction in the interpolation error is achieved. To
achieve the second criterion, an error estimator has to be defined that quantifies the error reduction. Once a
suitable error indicator is determined, the corresponding error indicators are computed in all the stochastic
dimensions.

One starts the interpolation construction with the smallest index 1 and adds the indices
ð2; . . . ; 1Þ; . . . ; ð1; . . . ; 2Þ. One then obtains an initial set of error indicators. The index set is partitioned into
two sets, the active indices A and the old indices O [36]. Newly added indices are denoted as active indices.
The error indicators of the forward neighbors of active indices have not yet been computed. All other indices
are denoted as old indices.

At each step, the forward neighborhood of the index set with the largest error indicator is considered, and
the corresponding error indicators computed. The forward neighborhood of an index i are the N indices
fiþ ejjj ¼ 1; . . . ;Ng. These new sets are added to the active index sets. Then the index set with the largest
error indicator is considered and so on. The error indicator is chosen to be the deviation of the computed value
of a particular point from its expected point (from the interpolation polynomial built at this level). This is just
the differential interpolation operator

P
Di�1ðf Þ (see Eq. (28)) i.e. it is the difference between the computed

value of the function at an active index and the interpolated value of the function using all the old indices.
In this way, the algorithm adaptively samples the regions of the conventional sparse grid support region

where the error is maximized. The following subsection illustrates the effectiveness of this methodology with
some sample examples.

6.3. Numerical illustrations

6.3.1. Interpolating anisotropic functions

We revisit the first problem in the sparse grid collocation section. Briefly, consider the function f ¼ e�x2�.y2
,

where . is a positive number. This function is analytically smooth. For . ¼ 1, the function is isotropically
smooth. The computational domain is ½�1; 1� � ½�1; 1�. We look at the problem for increasing .. As the anisot-
ropy increases the adaptive procedure must sample more points in that direction where the error is maximum
(the y direction in this particular case). Fig. 7 plots the adaptive grids used for the two particular cases of ..
Fig. 8 plots the error reduction with the number of support nodes. Compare this with the case of using the con-
ventional sparse grids (Fig. 6). The number of nodes required to achieve the same interpolation error of 5� 10�2

for the case of q = 1000 is 577 using the adaptive sparse grid method as compared to 1537 using the conventional
sparse grid method. As the anisotropy of the problem increases, the adaptive sparse grid method selectively
improves the function in the y direction, until the same level of accuracy is reached in both directions.

6.3.2. Interpolating discontinuous functions
We revisit the second problem discussed in the previous section. Briefly, consider a function f ¼ e�x2þ2signðyÞ

in the domain ½�1; 1� � ½�1; 1�, where sign is the signum function. The function f has a sharp discontinuity
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Fig. 7. The adaptive grid used for q ¼ 1 (left) and q ¼ 1000 (right). Notice the increased node points in the y direction for the second case.
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error plot using the conventional sparse grid method shown in Fig. 3.
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along the y = 0 plane. Fig. 9 shows the adaptive sparse grid used to compute the interpolation function for this
discontinuous function. Notice the large bias towards the y direction, which is to be expected from an adaptive
algorithm. Fig. 9 also plots the interpolated function. The error after using just 553 nodal points is 1� 10�1.
To achieve the same level of error using the conventional sparse grid method (see Fig. 5) 3300 points have to
be sampled.

The adaptive sparse grid collocation strategy – at worst – samples as many points as the conventional
sparse grid collocation strategy. This is for problems where every stochastic dimension is equally important.
In most physical problems encountered, the solutions exhibit some level of dissimilarity along various direc-
tions or have some structure that can be easily exploited using the adaptive sparse grid collocation method.
Furthermore, there is very little overhead in computing the error indicator function (since the error indicators
are just the incremental interpolation function at the new indices (Eq. (27)) [32]).

7. Ingredients for an adaptive sparse grid collocation implementation

In this section, we outline an approach to perform stochastic analysis of partial differential equations by
non-intrusively using an existing deterministic code. The solution procedure can be broadly divided into three
distinct operations:

� A subroutine for computing deterministic solutions.
� A subroutine for building the interpolation functions.
� A subroutine for computing moments and other post-processing operations.
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Fig. 9. Left: Adaptive mesh for the discontinuous problem, Right: Interpolated discontinuous functions.



7.1. Deterministic code

The concept of the collocation method lies in effectively decoupling the physical domain computation from
the computations in the stochastic dimensions. The deterministic codes used in the present work took in as
input, the sparse grid coordinates. For example, consider the case of two stochastic dimensions ðn1; n2Þ, that
determine the input random process x. The range of ðn1; n2Þ is assumed to be ½0; 1� � ½0; 1� without loss of gen-
erality. The deterministic executable must be able to take in the different sampled two-tuples ðni

1; n
i
2Þ and out-

put logically named result files Ri:out.

7.2. Interpolation functions

In the present work, we use a simple MATLAB wrapper program that first initializes the stochastic dimen-
sions and constructs the sparse grid coordinates. In the case of the conventional sparse grid collocation
method, all the sampled nodes are known a priori. Hence in this case, the deterministic code is run and the
appropriately named result files are available. The wrapper program then reads the input data and constructs
the interpolation function. For the rapid construction of the interpolation functions, we utilize the sparse grid
interpolation toolbox developed by Klimle [37,38]. In the case of the adaptive sparse grid collocation method,
the wrapper program builds the input files for the deterministic code, calls the executable of the deterministic
program and reads in the corresponding result at each step of the process.

7.3. Post-processing

Post-processing usually involves computing the moments of the stochastic solution across the whole
domain. This is essentially a cubature of the interpolating function across the stochastic space. In the case
of conventional sparse grid collocation, the integration is very straightforward because the weights corre-
sponding to the known nodal positions are computed a priori. A data set containing the weights for each
nodal position, for different dimensions and different interpolation depths was first created. Then the cubature
over the stochastic space for simultaneously computing moments of various fields becomes simple scalar–
matrix products. In the case of the adaptive sparse grid collocation method, the number of collocation points
is not known a priori and hence the weights for each point are computed on the fly. That is at each level (or if a
particular error tolerance has been reached), the interpolation functions are numerically integrated to get the
corresponding weights associated with each nodal point. This results in significantly larger post-processing
time for higher-dimensional integrations.

8. Numerical examples

In this section, we showcase the collocation based strategy to solving stochastic natural convection prob-
lems. In all the examples discussed in this work, we construct the interpolation functions based on Clenshaw–
Curtis points [32]. The Clenshaw–Curtis type grid has been shown to outperform other types of grids in
numerical tests [31,32]. In all the numerical examples, the global error computed is the maximum of the abso-
lute variation of the interpolated value from the actual value at the newly computed sparse grid points
ðsupiðDiÞÞ. That is, at each level, the function is evaluated at some points. The error is defined as the difference
between the interpolated value (using the interpolation function at the previous level) and the actual function
value at these points. The global error reported is the maximum of these errors.

8.1. Natural convection with random boundary conditions

In the following example, a natural convection problem in a square domain ½�0:5; 0:5� � ½�0:5; 0:5� is con-
sidered. The schematic of the problem is shown in Fig. 10. The left wall is maintained at a higher temperature
of 0.5. The right wall is maintained at a lower mean temperature of �0.5. The temperature at different points
on the right hand side boundary is correlated. This is physically feasible through, say, a resistance heater,
where the mean temperature remains constant, but material variations cause local fluctuations from this mean
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Fig. 10. Schematic of a natural convection problem with random boundary temperature conditions.
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temperature. We assume this correlation to be a simple exponential correlation function, Cðy1; y2Þ ¼
expð�c � jy1 � y2jÞ. Here, c is the inverse of the correlation length that is taken as 1. For ease of analysis,
we consider a non-dimensionalized form of the governing equations. The Prandtl number is set to 1.0 and
the thermal Rayleigh number is set to 5000. The upper and lower boundaries are thermally insulated. No slip
boundary conditions are enforced on all four walls.

Following the solution procedure in [3], the Karhunen–Loève expansion of the exponential correlation for
the input uncertainty is performed. Truncating the infinite-dimensional representation of the boundary tem-
perature to a finite-dimensional approximation gives
T ðy; nÞ ¼ �0:5þ
XM

i¼0

ni

ffiffiffiffi
ki

p
fiðyÞ; ð38Þ
where ni are normally distributed (Nð0; 1Þ). The eigenvalues of the correlation function decay very rapidly. The
two largest eigenvalues contribute to 95% of the energy of the spectrum. To showcase the sparse grid colloca-
tion method, three cases, where the Karhunen–Loève expansion is truncated at 2, 4 and 8 terms, are considered.

The physical domain is discretized into 50� 50 uniform quadrilateral elements. Each deterministic simula-
tion is performed until steady-state is reached. This was around 600 time steps with a time interval of
Dt ¼ 1� 10�3.

8.1.1. Convergence with increasing number of nodes

Fig. 11 plots the variation in the error with increasing number of support points for both the conventional
isotropic sparse grid and the adaptive sparse grid methods. In the case of the isotropic sparse grid method, the
level of interpolation is increased linearly for the three problems of dimensions 2, 4 and 8, respectively. For the
two-dimensional case, the adaptive sparse grid collocation (ASGC) is marginally better than the conventional
sparse grid collocation (CSGC) technique. The same level of accuracy is achieved in 137 function evaluations
as compared to the 321 required in the CSGC method. As the number of stochastic dimensions is increased,
the ASGC method provides orders of magnitude reduction in the number of functional evaluations. For the
same magnitude of error (� 4� 10�2), in four dimensions the ASGC required 751 function evaluations com-
pared to the 7537 that the CSGC required (see Fig. 11). This is illustrated clearly in the case of eight stochastic
dimensions where a 65 times reduction in the number of function evaluation is seen going from the CSGC to
ASCG methods (15,713 to 241). What has to be noted is that this dramatic reduction in the number of func-
tional evaluations is mainly due to the structure of the solution. While the adaptive strategy neglects the last
four dimensions and quickly converges to an accurate solution, the isotropic sparse grid method takes many
more functional evaluations to do the same because it treats all dimensions equally. As the number of dimen-
sions (i.e. more terms in the KL expansion are taken into account) increases, the isotropic method treats these
dimensions equally, even though the higher dimension have a negligible effect on the stochastic solution. On
the other hand, the adaptive method takes this structure into account and preferentially samples the dimen-
sions with the larger eigenvalues.



Number of nodes

E
rr

or

Number of nodes

E
rr

or

Number of nodes

E
rr

or

Fig. 11. Error reduction with increased number of support nodes for 2, 4 (top figures) and 8 (bottom figure) dimensions.
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8.1.2. Comparison with Monte-Carlo simulations and GPCE

In the case of the conventional sparse grid collocation method for the problem truncated to two-dimen-
sions, a level six interpolation scheme was used in the sparse grid interpolation method. This resulted in solv-
ing the deterministic problem at 321 different realizations. In the case of the adaptive sparse grid collocation
method, 137 realizations were required. The sparse grid points correspond to the Clenshaw–Curtis cubature
points in two-dimensions. The solution procedure is embarrassingly parallel. The complete simulation was
performed independently on 16 nodes (32 processors) of the V3 cluster at the Cornell Theory Center. The total
simulation time was about 8 min. To compare the results with other available methods, we performed Monte-
Carlo simulations of the same process. 65,000 samples from the two-dimensional phase space were generated.
A second-order polynomial chaos expansion of the above problem was also performed. The mean and stan-
dard deviation values of the three methodologies match very closely as seen in Figs. 12 and 13, respectively.
The total computational time for the GPCE problem was 235 min. Table 1 shows representative times for the
natural convection problem solved using GPCE and collocation based methods. The dimension 2 and 4 prob-
lems were solved using a second-order polynomial chaos representation, while the problem in eight dimensions
was solved using a first-order polynomial chaos representation. All problems were solved on 16 nodes (32 pro-
cessors) of the V3 cluster at the Cornell Theory Center. Notice that as the number of dimensions increases, the
performance of the collocation method improves.

8.1.3. Higher-order moments and PDFs

Once the interpolant has been constructed, it is relatively straightforward to extract higher-order statistics
from the stochastic solution. The effect of the uncertain boundary conditions is to change the convection pat-
terns in the domain. At the extreme ranges, the direction of the convective roll actually reverses. It is infor-
mative to look at the probability distribution of the velocity at the points of high standard deviation. This
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Fig. 12. Mean Temperature and u velocity contours from different solution strategies. Top row: A level 6 collocation method, Middle row:
Monte-Carlo sampling over 65,000 points, Bottom row: Second-order GPCE expansion.
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provides a clue towards the existence of equilibrium jumps and discontinuities in the field. The point ð0:34; 0:0Þ
is one such point of high-deviation (see Fig. 13). The velocity at that point was sampled randomly 500,000
times from the two-dimensional stochastic space and the corresponding PDF from its histogram distribution
was computed. The probability distribution functions for the temperature, pressure and velocities at this spa-
tial point are plotted in Fig. 14. The applied random temperature boundary conditions results in some real-
izations having temperatures (along the right wall) both higher and lower than the left wall. This leads to
instances where there is a complete reversal in the direction of circulation. Furthermore, as seen from
Fig. 12, most of the flow in the horizontal direction is concentrated in two regions. Consequently, the u veloc-
ity in these regions experiences a large variation due to the imposed boundary conditions. This results in the
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Fig. 13. Standard deviation of temperature and u velocity contours from different solution strategies. Top row: A level 6 collocation
method, Middle row: Monte-Carlo sampling over 65,000 points, Bottom row: Second-order GPCE expansion.
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tailing of the u velocity distribution seen in PDF for u velocity in Fig. 14. Since pressure can be considered to
enter the physics as a means of imposing continuity, the PDF for the pressure also exhibits a similar tailing.

8.2. Natural convection with random boundary topology

In the previous problem, we modelled the uncertainty due to the randomness in the boundary conditions.
In the present problem, we investigate the effects of surface roughness on the thermal evolution of the fluid
heated from below. The surface of any material is usually characterized broadly into two aspects: waviness
and roughness. Waviness refers to the large scale fluctuations in the surface. Roughness is the small scale per-
turbations of the surface. Roughness is described by two components: the probability of the point being z



Table 1
Solution times (min)

N (stochastic dims) GPCE Conventional SC Adaptive SC

2 235 8 3.4
4 5340 187 19
8 1585 391 8

Fig. 14. Probability distribution functions for the dependent variables at point (0.34,0). Top row: Temperature and pressure, Bottom row:
u and v velocity components.
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above/below the datum (PDF), and the correlation between two points on the surface (ACF). The type of sur-
face treatment that resulted in the surface can be directly concluded from the auto-correlation function. For
example, if the surface has been shot-peened, its ACF would have a larger correlation distance that if the sur-
face had been milled. Usually the PDF of the position of a particular point is well represented by a Gaussian
like distribution. To a degree, the ACF can be approximated by an exponential correlation kernel with a spec-
ified correlation length. Surface roughness has been shown to play an important role in many systems, partic-
ularly those involving turbulent flow [39]. A recent work of Tartakovsky and Xiu [40] deals with this problem
in a spectral stochastic framework.

A natural convection problem in a rectangular domain ½�1:0; 1:0� � ½�0:5; 0:5� is considered. The schematic
of the problem is shown in Fig. 15. The upper wall is smooth while the lower wall is rough. The ACF of the
surface roughness of the lower wall is approximated to be an exponential function. The correlation length is
set to 0.10. The mean roughness (absolute average deviation from a smooth surface) is taken to be 1

100
th of

the characteristic length (L ¼ 1:0). The first eight eigenvalues are considered to completely represent the surface
randomness. The problem is solved in eight-dimensional stochastic space. The bottom wall is maintained at a
higher temperature of 0.5. The top wall is maintained at a lower temperature of �0.5. The side walls are ther-
mally insulated. The Prandtl number is set to 6.4 (corresponding to water) and the thermal Rayleigh number is
set to 5000. No slip boundary conditions are enforced on all four walls. The physical domain is discretized into



T (y) = 0.5

T (y) = -0.5

y = f(x,ω)

Fig. 15. Schematic of natural convection with random boundary topology (surface roughness).
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100� 50 uniform quadrilateral elements. Each deterministic simulation is performed until steady-state is
reached. This was around 400 time steps with a time interval of Dt ¼ 1� 10�2.

Each deterministic simulation represents one realization of the random (rough) lower wall sampled at dif-
ferent n ¼ ðn1; . . . ; n8Þ. The lower wall is characterized by the truncated KL expansion, yðxÞ ¼

P8
i¼1

ffiffiffiffi
ki

p
nifiðxÞ,

where ki and fiðxÞ are the eigenvalues and eigenvectors of the ACF. A reference domain (½�1:0; 1:0� �
½�0:5; 0:5�) and grid (100 · 50 uniform quadrilateral elements) are considered and the nodes on the bottom
boundary are transformed according to the above formula to get each realization of the random boundary.
The Jacobian of the transformation from the reference grid to the new grid can be easily computed (it is just
the ratio of the elemental areas before and after the transformation). The deterministic solutions at each col-
location point in stochastic space is computed on the reference grid. This allows the subsequent computation
of the ensemble averages naturally.

In the case of the conventional sparse grid collocation method, a level 4 sparse interpolation grid was uti-
lized for discretizing the stochastic space. 3937 collocation points were used to discretize the eight-dimensional
stochastic space using the conventional sparse grid collocation method (CSCG) while the adaptive sparse grid
collocation method (ASGC) method required 820 realizations to construct the interpolation function. Eight
nodes on the Velocity-3 cluster at the Cornell Theory Center took 500 min for simulating the problem at
all the collocation points. Fig. 16 plots the reduction in the error with the number of nodal supports used.

Fig. 17 shows some sample realizations of the temperature and velocity contours. The first row of figures is
the case when the roughness is minimal. The temperature and velocity contours closely resemble those of Ray-
leigh–Bénard convection with smooth boundaries. The next four rows of figures show extremal values of the
surface roughness. The thermal plume changes position according to the local surface geometry. Also note
that the flow field has been substantially enhanced due to roughness. Experiments have shown that surface
Number of nodes

E
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Fig. 16. Error reduction using the adaptive sparse grid methodology.
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roughness results in the emission of thermal plumes (at high Rayleigh number) and generally causes enhanced
heat transport and improved flow circulation [39].

8.2.1. Moments and probability distribution functions

Fig. 18 plots the mean values of the temperature, velocity and pressure. The rough lower surface causes the
mean temperature to be much more homogenized. The mean velocity is larger than the case with smooth lower
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surface. In the case of smooth lower surfaces, the u velocity shows symmetry about the horizontal centerline.
Notice that this is lost when the lower surface is made rough. The rougher surface enhances the circulation
patterns in the lower half of the system. Fig. 19 plots the mean velocity vectors and some streamline contours.
The top corners of the system consist of recirculating rolls which result in reduced heat transfer at the edges as
can be seen in the mean temperature contour plot.

Fig. 20 plots the second moment of the temperature, velocity and pressure variables. The standard devia-
tion of the velocity is of the order of the mean velocity. This suggests that there are multiple modes at which
the system exists and the variation of the random variables across the stochastic space causes the system to
move from one stable state to another. If the state changes abruptly as the random variable moves across
a threshold value, a mode shift is said to have occurred. The existence of multiple patterns in the region of
parameters considered here is well known [41].

8.2.2. Mode shifts and equilibrium jumps

One way to identify multiplicity of stable states is through visualizing the probability distribution functions
of the dependent variables at a physically relevant point. Small changes in the roughness causes the central
thermal plume in the case of smooth surface Rayleigh–Bénard instability to change positions. This can cause
reversal of the direction of the fluid flow in parts of the domain (compare rows 2 and 3 in Fig. 17). We choose
one such point (0, 0.25) which has a large deviation in the temperature to plot the PDFs. The PDFs were com-
puted from 500,000 Monte-Carlo realizations of the dependent variables. Fig. 21 plots the corresponding dis-
tribution functions. Notice that there exist two peaks in the distribution functions for the temperature pressure
and the v velocity. This confirms the existence of two stable states. We assert that these shifts also occur due to
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Fig. 19. Mean velocity vectors and streamlines.
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Fig. 21. Probability distribution functions for the dependent variables at point (0.25, 0). Top row: Temperature and pressure, Bottom row:
u and v velocity components.
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the non-linearities introduced by the surface roughness. To verify if this is indeed the case, Fig. 22 shows the
temperature and v velocity variations at a specific point ([0.0, 0.25], chosen because of its large temperature
and v velocity second moment) plotted over the first two random variables. Notice the abrupt jump in the tem-
perature and v velocity as the random variables cross 0. Fig. 23 shows the projection of the variation onto a
single dimension. The mode shift is apparent in the abrupt change of the dependent variables as the random
variable crosses over zero.

8.2.3. Below the critical Rayleigh number

As an extension to the previous problem, we investigate the possible mode shifts from a conduction based
state to a convection based (Rayleigh–Bénard flow) thermal pattern caused by the effect of surface roughness.
Fig. 22. Mode shift: Left: Temperature, Right: v velocity component.
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Fig. 23. Mode shift: Left: Temperature, Right: v velocity component.
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A sub-critical Rayleigh number of 1700 is chosen. This is just below the critical Rayleigh number of 1708. The
other system and domain specifications are the same as the previous problem. We study the problem in four
stochastic dimensions.

The critical Rayleigh number of 1708 is computed for a infinitely long, flat layer of fluid. The variations in
the lower surface coupled with the fact that we are in fact only considering a finite sized domain causes the
onset of convection in some of the stochastic space. Fig. 24 shows two such extreme realizations of temper-
ature at two different collocation points. Notice that the two patterns are almost mirror images of each other.
But the behavior of the mean temperature is along expected lines. Fig. 25 plots the mean and the standard
deviation of the temperature contours. The temperature evolution is predominantly conductive.

To further verify that no mode shift occurs as the stochastic phase space is sampled, Fig. 26 plots the pro-
jection of the temperature and y velocity variations onto one dimension at a specific point ([0.0, 0.0]). The v

velocity variation is smooth with small gradients (compare with Fig. 23) while the temperature variation is
negligible.
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Fig. 27. Left: ACF of the surface roughness, Right: eigenspectrum of the correlation.67B. Ganapathysubramanian, N. Zabaras / Journal of Computationa
8.3. Natural convection with random boundary topology: large dimensions

In the previous problem, we concentrated on qualitatively predicting mode shifts caused due to surface
roughness of the lower wall in a Rayleigh–Bénard type simulation. To represent the surface roughness, the
ACF was considered to be an exponential function. In this problem, we consider realistic ACF from experi-
mental data. The surface roughness correlation function is given in Fig. 27 (taken from [42]). The correspond-
ing eigenspectrum is given in Fig. 27. The first 20 eigenvalues correspond >99% of the spectrum.

A natural convection problem in an enlarged rectangular domain ½�2:0; 2:0� � ½�0:5; 0:5� is considered. The
schematic of the problem is shown in Fig. 28. The upper wall is smooth while the lower wall is rough. The
mean roughness (absolute average deviation from a smooth surface) is taken to be 1

200
th of the characteristic

length (L ¼ 1:0). The first 20 eigenvalues are considered to completely represent the surface randomness. The
bottom wall is maintained at a higher temperature of 0.5. The top wall is maintained at a lower temperature of
�0.5. The side walls are thermally insulated. The Prandtl number is set to 6.4 (corresponding to water) and the
thermal Rayleigh number is set to 10000. No slip boundary conditions are enforced on all four walls.

A level 3 interpolatory sparse grid is considered in 20-dimensional stochastic space. This corresponds to
11561 collocation points. The complete simulation took about 1400 min on 48 nodes of the Velocity-3 cluster
at the Cornell Theory Center. Fig. 29 shows temperature contours at some of the collocation points in
20-dimensional stochastic space. Fig. 30 shows the mean values of the temperature and the v velocity.
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T (y) = 0.5

T (y) = -0.5

y = f(x,ω) 

Fig. 28. Schematic of natural convection with wall surface roughness computed from experiments.
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Fig. 31 plots the mean velocity vectors and some streamlines. The standard deviations of the temperature and
the v velocity are shown in Fig. 32. Notice that the surface roughness causes thermal plumes to form, which
are seen in the variations in the temperature and the v velocity. These plumes caused by the non-uniformities in
the lower surface result in improved heat transfer across the domain. This concept can be further extended to
the design of the ACF of the surface roughness to achieve enhanced heat transfer characteristics. This will be
showcased in one of our forthcoming publications.

8.4. Convection in heterogeneous porous media

Fluid flow through porous media is an ubiquitous process occurring in various scales ranging from the large
scale: geothermal energy systems, oil recovery, to much smaller scales: flow of liquid metal through dendritic
growth in alloy solidification and flow through fluidized beds. The analysis of flow through a medium with
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deterministic variable porosity has been well studied [43]. But in most cases of heterogeneous porous media,
the porosity either varies across multiple length scales or cannot be represented deterministically. In the fol-
lowing example, we focus on the case when the porosity is described as a random field. The usual descriptor of
the porosity is its correlation function and the mean porosity.
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A schematic of the problem is shown in Fig. 33. This problem has been investigated by Nithiarasu et al.
[43]. A square domain of dimensions ½�0:5; 0:5� � ½�0:5; 0:5� is considered. The inner half of the square is con-
sidered to be free fluid. The rest of the domain is filled with a porous material. The porous material is assumed
to be Fontainebleau sandstone, whose experimental correlation function is taken from [44]. The correlation
function and a cross-sectional image of the sandstone is shown in Fig. 34.

The governing equation for the fluid flow in the variable porosity medium is given by (see [43,45]):
ov

ot
þ v � r v

�

� �
¼ � Pr

Da
ð1� �Þ2

�2
v� 1:75kvkð1� �Þ

ð150DaÞ1=2
�2

vþ Prr2v� �rp � �PrRaT eg; ð39Þ
where � is the volume fraction of the fluid and Da is the Darcy number. Natural convection in the system is
considered. The left wall is maintained at a dimensionless temperature 1.0, while the right wall is maintained at
0.0. The other walls are insulated. No slip conditions are enforced on all four walls. The Rayleigh number is
10,000 and the wall Darcy number is 1:185� 10�7. The wall porosity is � = 0.8 and the porosity of the free
fluid in the interior of the domain is 1.0.
Free fluid
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u=v=0
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Porous medium

Fig. 33. Schematic of convection in a medium with random porosity.
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Fig. 34. Fontainebleau sandstone: correlation function and cross-sectional image.
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Fig. 35. Eigenspectrum of the correlation kernel.
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The numerically computed eigenvalues of the correlation are shown in Fig. 35. The first eight eigenvalues
correspond to 94% of the spectrum. We consider the porosity to described in a eight-dimensional stochastic
space. The mean porosity is 0.8. A level 4 interpolatory sparse grid with 3937 collocation points was utilized
for the stochastic simulation. A fractional time step method based on the work of Nithiarasu et al. [43] is used
in the simulation of the deterministic problem. Fig. 36 plots the mean temperature, velocity and pressure con-
tours. Fig. 37 shows the mean velocity vectors and some streamlines. The standard deviation of the dependent
variables is shown in Fig. 38.
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9. Conclusions

The generalized polynomial chaos approach and its derivatives have been extensively utilized to solve ther-
mal and fluid flow problems involving random inputs and boundary conditions. The GPCE is restrictive in the
sense that it becomes computationally infeasible to solve problems involving large number of expansion terms
due to the coupled nature of the governing equations. In this context collocation based approaches are con-
sidered. We have attempted to provide a natural development of collocation based approaches starting from
the drawbacks of the spectral stochastic methodology. We show that this leads naturally to the tensor product
.097.084.071.058.045.032.019.006
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collocation method [26] and the sparse grid collocation method [27]. An extension of the sparse grid colloca-
tion method to adaptively sample regions/dimensions of high function variations is presented. The methodol-
ogy can also efficiently detect additive and nearly additive structures in the solution. The adaptive sparse grid
collocation methodology provides at least an order of magnitude improvement in the number of function eval-
uations required to construct comparable interpolation functions as compared to the conventional sparse grid
method. The collocation methodology results in the solution of completely decoupled deterministic problems.
The embarrassingly parallel nature of these problems is exploited to construct fast and efficient solution strat-
egies to problems in high stochastic dimensions. Using the adaptive sparse grid collocation method, it is rel-
atively straightforward to convert any deterministic code into a code that solves the corresponding stochastic
problem. We provide a detailed road-map, description of the necessary changes in the deterministic code and
the required subroutines for pre- and post-processing to easily accomplish this change.

We have attempted to showcase the utility of the sparse grid collocation method to solve large stochastic
dimensional heat transfer problems. We have solved realistic natural convection problems in rough surfaces
with stochastic dimensions up to d ¼ 20 as well as natural convection problems through heterogeneous porous
media. We further looked at the shifts in equilibrium that occur due to slight variations in the boundary con-
ditions and successfully captured these equilibrium jumps.

We are currently investigating the solution of stochastic inverse design problems utilizing the decoupled
nature of the resulting deterministic partial differential equations.
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